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CONSTRUCTING A MINIMAL COST SPANNING TREE
SUBJECY TO RESOURCE CONSTRAINTS AND FLOW REQUIREMENTS

by
Andrew W. Shogan
Univeraity of California, Berkeley
1. INTRODUCTION

Given a connected, undirected, N-node network with a weight assigned
to every arc, solving the minimal spanning tree (MST) problem requires the
construction of a connected subnetwork that includes every node of the net-
work and whose arcs have a minimal total weight. It is well-known that
such a subnetwork will always be an (N-1l)-arc tree, that is, a connected
network with no cycles.

The construction of an MST is the goal in a wide variety of applica-
tions. For example, given a set of nodes that must communicate with each
other and given the cost of constructing a communication link between each
 pair of nodes, the MST is the solution to the problem of comstructing at
minimal cost a network in which every pair of nodes can communicate along
some path. A number of other seemingly unrelated problems and applicatiomns
can be reduced to minimal spanning tree problems; both Bradley [l1] and
Kershenbaum and Van Slyke [19] provide excellent surveys.

There are two classic MST algorithms, one due to Kruskal [20] and
another discovered independently by Prim [21] and Dijkstra[6]). Both algo-
rithms consist of N-1 iterations, with each iteration identifying a new
arc of an optimal spanning tree. An iteration of the Kruskal algorithm
consists of adding an arc to a forest of subtrees; the added axrc is the arc

of least weight that when added to the forest of subtrees does not form a

cycle. An iteration of the Prim-Dijkstra algorithm consists of adding an
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arc to a single subtree; the added arc is the arc of least weight incident
to a node in the subtree and a node not in the subtree. Both algorithms
are efficient and easy to implement on a computer; Kershenbaum and Van
Slyke [19], Yao [24]}, and Cheriton and Tarjan [4] discuss very efficient
computer implementations that rely on sophisticated sorting and storage
techniques.

In many practical situations, resource constraints and flow require-
ments preclude the construction of the unconstrained MST obtained by apply-
ing either the Kruskal or Prim~Dijkstra algorithm; this paper comsiders
such a situation. More specifically, consider a set of N nodes having
indices 1, 2, ..., N; node 1 18 a source having an infinite supply of a
commodity, and every other node p 1is a sink having a known constant de-
mand dp. Denote the undirected arc between two nodes having indices
p<q by (p,q); note that there are un = (1/2)(N)(N-1) arcs. For nota-
tional convenience, assign to each arc a distinct index j equal to its
position in a lexicographic ordering of the n arcs based on the represen-
tation of an arc as a vector (p,q) with p < q; that is, assign arc
(p,q) the index j = (1/2)(p-1)(2N~p) + (q-p), where 1 < p < q < N, 8o
that 1 € j { n. The construction of the spanning tree requires the con-
sumption of m scarce resources available in supplies by for
i=1, 2, ..., m. Associated with each potential arc j of the spanning
tree are = + 2 known constants: c» the cost of constructing arc J,
a4y (1 <1 =), the amount of resource 1 consumed during the construc-
tion of arc j, and ey the flow capacity of arc J. (Since there exists
in any spanning tree a unique path between the source and a given sink,

ey is effectively an upper limit on the summation of demands over all
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sinks whose unique paths to the source include arc j.) Given dp for

each sink p and °j’ a for each arc j, the problem

13° ‘23’ veey '.j’ ej
is to construct a minimal cost spanning tree subject to the resource comn-
straints (i.e., the consumption of each scarce resource cannot exceed its
available supply) and subject to the requirement that there exiats a feas-
ible flow (i.e., a flow on the arcs of the spanning tree that satisfies the
demands at the sinks without exceeding any arc capacity). Hereafter, this
problem will be referred to as the resource-constrained, capacitated mini-
mal spanning tree problem and abbreviated as the RCMST problem.
Note the following characteristics of the RCMST problem:
(1) It is assumed that between any pair of nodes there exists only
one arc under consideration for inclusion in the spanning tree;
Section 5 relaxes this assumption in order to consider-the case
wvhere any one of multiple arcs between a pair of nodes is
eligible for inclusion in the spanning tree.
(2) If for some arc j, cy = =, 284y > by for some {1, or
ey = 0, then arc j wmay be excluded from consideration.
(3) The constants cyr 844 for {1 =1, 2, ..., m, and ey
for some arc J may be interrelated; for example, a portion of
the construction cost cj may be attributable to the costs
of the scarce resources consumed and/or the magnitude of the
capacity or, for example, one of the resource constraints may
1imit the number of arcs of a given capacity that may be in-
cluded in the spanning tree.
(4) REach resource constraint need not represent a resource in the

strict sense of the word. For example, by setting agy = 1
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if arc J 1is incident to node i and ajj = 0 otherwise,

the 1-th resource constraint may be used to require the degree

s 4 okl o e

of node i in the spanning tree to be no greater than some
constant by; hereafter, such a resource constraint will be
i referred to as a "degree constraint”.

(5) If the demands dp, 2 <{p <N, all equal 1, then an arc
capacity ey (1 < j < n) may be interpreted as the maximum
number of nodes that may access the source through arc j 1if ;
it were to be included in the spanning tree. For example,

e, = K for any arc j incident to the source and ej = ®

b

otherwise models the situation where at most K nodes (e.g.,

computer terminals) may be contained in any subtree connected
directly to the source (e.g., a central computer) by arc J
(e.g., a port). As another example, ey = K for every arc

j models a "reliability constraint” stating that at most K
demand nodes may be disconnected from the sink by the removal
(failure) of any arc from the spanning tree.

(6) Requiring the constructed network to be a tree implies that
there are reasons (perhaps physical or technological) that
prevent the flow from the source to a particular sink to be
transmitted simultaneously along more than one path.

In it- most general form, the RCMST problem has not yet been dis-

cussed in the literature; neither has the special case, hereafter referred
to as the Regource-constrained Minimal Spanning Tree (RMST) problem, in

vhich ej = » for every arc | (L.e., the flow constraints may be ig-

nored so that only the resource constraints are present). However, two
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special cases of the RCMST problems have received significant attention by
other researchers: (1) the Degree-constrained Minimal Spanning Tree (DMST)
problea in which ey == for every arc jJ and in which all resource
constraints are “"degree constraints” as described earlier and (2) the
Capacitated Minimal Spanning Tree (CMST) problem in which by = « for
every resource 1 (i.e., the resource constraints may be ignored so

that only the flow constraints are present). Both the DMST and the CMST
problems are known to be NP-hard; consequently, most approaches to these
problems have been heuristic rather than exact. Kershenbaum [18] has sur~
veyed and analyzed the computational complexity of a class of heuristic
algorithms for the CMST problem; Chandy and Lo [3]) have proposed a branch-
and-bound algorithm for obtaining the exact solution to the CMST problem;
and, more recently, Gavish [11, 12] has proposed a Lagrangean-based
approach to both the DMST and CMST problems.

The remainder of this paper is organized as follows. Section 2 dis-
cusses applications of the RCMST problem; Section 3 describes a branch-and-
bound algorithm (based on Lagrangean relaxation) for solving the RMST prob- :
lem and illustrates the algorithm with an example; Section 4 discusses the

modifications to the algorithm necessary to solve the more general RCMST

problem; Section 5 discusses further modifications necessary to solve two
extensions of the RCMST problem, the existence of multiple arcs between a ;
pair of nodes and the existence of multiple sources; finally, Section 6

reports some preliminary computational experience with a computer implemen-

tation of the algorithm.

In the remsinder of this paper, the following conventions, notation,

and terminology will apply:
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1)
(2)

3

(4)
(3)

(6)

€))

(8)

all vectors are row vectors;

¢ will denote a vector whose j-th component is €4 the

cost of coanstructing arc j;

whenever "0" 1s used vhere a vector would normally appear, it
represents s vector with every component equal to O;

if x= (xl, Xys ooy xn), then Ixl = 2:-1 xi;

if x and y are two vectors having the same dimensfion, xy
represents the product of x and y, where it is implicitly
assumed that y has been transposed so that the product is
defined;

if x and y are two vectors having the same dimension,

max (x,y) represents a vector whose i-th component is the
saximum of the i-th component of x and the i~th component
of y;

if A and B are two sets, A-B denotes the intersection of
A and the complement of B, that is, the set of elements in A
but not in B;

the existence of a “"feasible flow™ in a tree implies that there
exists a flow on the arcs of the tree such that the flow on any
arc does not exceed the arc's capacity and the difference
between the flow out of a node and the flow into a node equals

the node's supply if it is a source, the negative of the node's

demand 1if it is a sink, and zero othervisge.
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2. APPLICATIONS

The RCMST problem has applications to the design and construction of

a tree network in which a set of demand nodes and a single source must be
interconnected by selecting from a set of potential arcs, each having an
associated capacity and resource consumptions. For example, the demand
nodes may be computer terminals, the source may be a central computer, and
the arcs may be potential transmission lines (cf. [3], [12], and {18]);
alternatively, the demand nodes may be offshore natural gas fields, the
source may be an onshore separation and compression plant, and the arcs may
be potential pipelines (cf. [22}).

Although the RCMST problem has applications to the design and
construction of spanning trees, the primary motivation for consideration of
the RCMST problem was the problem of reconstructing a network after a
natural disaster, such as an earthquake. Cities, states, and countries
rely heavily on a variety of networks: energy networks (such as electrical
or natural-gas networks), communication networks (such as telephone,
telegraph, or computer networks), transportation networks (such as highway
or railroad networks), and water networks (such as networks for the
distribution of potable water or the removal of Qevage). Using an analogy
with the human body's life-supporting "networks” (e.g., the vascular and
neurological systems), C.M. Duke and D. F. Moran [7] coined the term
"1ifelines” to refer to such networks, and their analysis and recommenda-
tions following the 1971 San Fernando (California) earthquake lead to am
increased emphasis by professionals and academicians on the problems of
“1ifeline earthquake engineering”. In the last 10 years, much research has

been devoted to predicting the level of damage a particular lifeline might




sustain in an earthquake and to designing new lifelines and “"retrofitting”
existing lifelines to limit the potential damage as much as possible.
However, not nearly as much effort has been devoted to the decision
problems associated with optimally restoring the services provided by a
lifeline that has been damaged by an earthquake. Restoration of service is
an important problem if one accepts the fact that in certain regions of the
world, earthquakes and the resulting damage to lifelines are inevitable.
Many important lifelines do not have a tree structure, and, after
sustaining damage, the long-run goal for such a network will be to rebuild
the network so that it is as good or better than it was prior to the
earthquake. However, the short-run goal may be less ambitious. In the
short-run, the goal may simply be to allocate scarce resources (labor,
equipment, spare parts, etc.) to the repair process in such a way as to
restore some "minimal level of service” as quickly and economically as
possible. One possible interpretation of "minimal level of service” 1is
that the short-run goal would be to construct a spanning tree (when only a
single source exists) or a spanning forest (when multiple sources exist) so
that every demand node would have accegs to a source. Stated more formally
in the context of the RCMST problem, suppose that the short-run
post—earthquake goal for a damaged network is to construct a minimsl cost
spanning tree by repairing a sufficient number of arcs. The restoration of
are J (1 € J < n) to its former capacity ey would cost cj dollars
and would consume azj (1 <1 < m) units of the limited quantity of
by wunits of resource 1. The extensions discussed in Section 5 are
applicable if it is possible to repair an arc in a variety of ways, with

each way having a distinct associated cost, capacity, and consumption of

resources and/or if there exist multiple sources.
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3. SOLVING THE RMST PROBLEM ]

Let x denote a binary vector whose j-th component x4 equals

1 4if arc jJ 418 included in the spanning tree and equals O otherwise;
hereafter, such an x will be referred to as an incidence vector. Edwonds
[8) has shown that x 1is an incidence vector corresponding to a tree if
and only if x 18 an extreme point of the feasible region of a finite but

very large system of linear inequalities; hereafter, x ¢ T will denote

sk

that x3 =0 or 1 for 1< j<n and x also satisfies Edmonds' E
system of linear inequalities, or equivalently, x 1is an incidence vector
corresponding to a tree.

The RMST problem can now be formulated as the following binary

integer linear program:
(P) Minimize 2‘;_1 e

n
subject to Zj-l aijles b1 for 1 <1< m,

and x € T.

Were it not for the m resource constraints, (P) would simply be a
classic MST problem and could be easily solved by either of the algorithms
discussed in Section 1. However, the presence of the resource constraints
precludes an easy solution of (P).

Using one of the binary integer linear programming algorithms to
solve (P) 1s impractical due to the umnmanageable size of the system of

linear inequalities represented by x ¢ T. Instead, the approach taken in




this paper will be to solve (P) by a branch—-and-~bound algorithm based on
the technique of Lagrangean relaxation.

Fisher (9], Shapiro [23], Fisher, Northup, and Shapiro [10], and
Geoffrion [13] have all written excellent surveys of Lagrangean
relaxation. The technique was applied first im 1970 and 1971 by Held and
Karp [14, 15] in their highly successful branch-and-bound approach to the
traveling salesman problem. Held and Karp used a variant of a tree called
a 1l-tree, defined as a network consisting of N nodes and N arcs and
obtained by connecting node 1 to any two nodes in a spanning tree
interconnecting nodes 2, 3, ..., N. Thus, a 1l-tree always has one and
only one cycle, this cycle always contains node 1, and node 1 always has
degree two. Also, note that a minimum—cost 1l-tree can be efficiently
found by constructing a minimum-cost spanning tree interconnecting the
nodes 2, 3, ..., N and then connecting node 1 to the tree by the two
arcs incident to node 1 having the lowest cost. Upon observing that a
tour for the traveling salesman is simply a 1l-tree in which each node has
degree two, Held and Karp formulated the traveling salesman problem as the
minimum-cost 1l-tree problem subject to the additional constraints that
each node has degree two. The formulation is similar to that of (P) with
T modified slightly to take into account that x should correspond
to a l-tree and the resource constraints replaced by linear equations
requiring each node to have degree two. Held and Karp solved their
degree-constrained minimum-cost 1-tree problem by developing a
branch-and~bound algorithm that for the first time used the concept of

Lagrangean relaxation. Subsequent to the pioneering work of Held and Karp,
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many applications of Lagrangean relaxation have appeared in the

literature. Fisher [9] provides an excellent survey and a comprehensive
bibliography.

The discussion to follow of the branch-and-bound algorithm used to
solve (P) will employ the standard terminology (cf. [17, pp. 716-718).

In particular, at any point in the algorithm, let Z_. denote the objective

I

value of the incumbent, the best known feasible solution of (P); unless a

feasible solution is known at the start, Z. 1is initially set to =,

1
It is helpful to think of the algorithm as producing a rooted tree

(hereafter referred to as the b&b-tree in order to distinguish it from a
spanning tree), where the root of the b&b-tree corresponds to problem

(P). Every other node of the b&b-tree corresponds to a problem similar to
(P) but having added restrictions placed on the incidence vector x . In
particular, associated with each node of the b&b~tree are two mutually
exclusive subsets A and B of the set of arc indices {1, 2, ..., n};
the subset A consists of indices of arcs that not only form a subtree but
also must be "admitted” to the spanning tree (xj =1 for j € A), and the

subset B consists of indices of arcs that must be "banished” from the

spanning tree (x,= 0 for j € B). Given its assocfated A and B, a

]
node of the b&b-tree corresponds to the binary integer linear program

n
(PAB) Minimize lj-l cjxj

subject to Z;-l 84%4 £b for 1<1<n ,

and x ¢ TAB »
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vhere T, =T n {x xy = 1 for j eA}ln {x x, = 0 for j € B}.

Because TAB-E T, problem (PAB) will be referred to as a “"subproblem” of

problem (P). At any stage of the branch-and-bound algorithm, the TAB
sets assoclated with the leaves of the b&b-tree are a partition of T; in
this sense, then, the subproblems (PAB) associated with the leaves of the
béb-tree are a "partition” of the problem (P).

The Lagrangean relaxation (L-relaxation hereafter) of problea (PAB)

relative to the m resource constraints and a given nonnegative dual

vector A = (li, AZ‘ cesy ﬁi) is the binary integer linear program

44 Minimize

A , -0
AB a1 €54 * Y My 245 %4~ b
subject to * € TAB’

or, equivalently,

Minimize ),j p (gt Bap My g%, - Be1 Mby

subject to X € TAB .

Note that for a given nonnegative A\, (P:B) is equivalent to an MST
problem where the weight associated with arc j s -o if § € A, « {f
jJ €eB, and (c + )1_1 y 13) otherwise. As such, (P ) may be solved

easily by any of the MST algorithms discussed in Section 1.

For a given A and B and any nonnegative A, let V:B and

v:'(l) denote the optimal objective values for problems (PAB) and

A
(PA'), roupectifely. Clearly, V:B(k) S_vxn; that is, vxx(h) is a lower

bound on v:n for any nonnegative A. A traditional branch-~and-bound

approach might use v:B(O) as 8 lower bound for v:n, that is, compute a




lower bound on vzn by simply ignoring the resource constraints and

solving the resulting minimal spanning tree problem. However, a branch-
and-bound algorithm based on L-relaxation seeks to increase the likelihood
of fathoming a subproblem (PAB) by searching for the greatest possible
lower bound by considering the following dual problem of (P,p).

(™..) maximize w:B( A)

AB

subject to hi 20 for 1 {i<m .

Note that although problem (Dpp) will be referred to as the dual of

problem (Ppp), a "duality gap” (cf. [10, p. 57] or [13, p. 87]) may be

present; that is, the optimal objective value for (D,g) may be strictly

less than the optimal objective value for (P,p). Also, as indicated in

the discussion below of the branch-and-bound algorithm, there are other

potential benefits to considering (Dpp) in addition to an increased

likelihood of fathoming a subproblem (P,p) based on a lower bound on

its optimal objective value. In particular, instead of simply solving 3

(P:B) as a wore traditional approach might do, the attempt to solve (QAB) A

St

involves the solution of a series of problems of the form (ch) with a
different value of A each time; this increases the likelihood of i
fathoming the subproblem (P,p) because each solution of a particular

(Pzi) may result in one or more of the following possibilities:

(1) an increased lower bound on the optimal objective value of

(Pn) ’

(2) a decrease in the objective value of the incumbent,

~-13-




(3) the optimal solution to (P,p).

Note that possibility (2) also may lead to the fathoming of other
subproblems besides the particular (P,p) under consideration.

Figure 1 contains a flow chart of the branch-and-bound algorithm; a
sore detailed discussion of each of the steps follows. As indicated
eariier, for a given A and B and any nonnegative A, w:B(k) denotes
the optimal objective value for problems (P:B); also, let x:B(k) denote
an optimal incidence vector for (PkB) and let s:B(l) denote an
a~vector whose i-th component is the value of bi - 23_1 aijxj evaluated

at x = x:B(k), that is, the value of the slack variable for the i-th

A
resource constraint when evaluated at the optimal solution to (PAB)'

Steps 1, 2, and 10: The stack is a list of unfathomed subproblems.

A subproblem (Ppp) on the stack is characterized by a "vector of
information” [A,B,l,wxx(h),s:B(K)], where A 18 not necessarily the
optimal solution to problem {(D,,) but is such that wzn(k) is the

greatest known lower bound on v Initially (Step 1), the stack contains

* .
AB
a single subproblem [0,0,0,w:’(0),s:°(0)] corresponding to solving the
minimal spanning tree problem (P:.) that results from ignoring the
resource constraints in problem (P°¢) = (P). When the stack contains more
than one fitem, it is helpful to think of items on the stack as being
ordered from the top to bottom in increasing magnitudes of the lower bound
w:B(A). In selecting a new subproblem from the stack (Step 2), the chosen
subproblem is the one with the lowest lower bound wxn(k), that is, the

subproblem on the top of the stack. Of course, if the stack is empty (Step

10), all subproblems have been fathomed and the incumbent incidence vector

14~
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is the optimal solution to (P); actually, since it is not unusual for the
incumbent to change after a subproblem has been placed on the stack, a
non-empty stack should be emptied by the fathoming of the entire stack
whenever the item on the top of the stack has a lower bound uin(x)

greater than or equal to the incumbent's objective value.

Overview of Steps 3-6: Upon the selection of a subproblem (P,p)

characterized by the “vector of information" [A,B,A,H:B( N, ':n(")]' an
attempt is made to solve the problem (Dpg). Because of the work of
Edmonds [8] discussed earlier in this section, problem (P:B) has the
Integrality Property of Geoffrion [13, p. 89]; hence, the optimal solution
to problem (Dpg) may be obtained in principle as the optimal dual
variables associated with the resource constraints of the linear program
that results from replacing "xj =0 or 1" with "0 (x5 < 1”7

(1 < J <n) in the binary integer linear program (Ppp). However,
solving (Dpp) in such a manner is impractical due to the large number

of linear inequalities represented in (Pp,g) by x € Tsp; hence, an
attempt to solve (Dpp) will be made through an iterative procedure
(Steps 3-6) known as subgradient optimization (c¢f. [9], [10], [13], and
f16]). Subgradient optimization i1s so named because -s:B(h) is a sub~
gradient of the objective function for (DAB) at the point A, and the
procedure optimistically uses this subgradient as if it were a gradient
pointing in & direction of steepest ascent. Iteration k of subgradiemt
optimization consists of the following steps:

(3) movement to a new dual vector AF obtained recursively from AF-I, (%)

k
solution of the L~relaxation (’:B)’ (5) attempting to fathom the

~15-
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k
subproblen (PAB) based on the results of solving (Pkn), and (6)

deciding whether to perform another iteration if the fathoming attempt was
unsuccessful. The hope is that the sequence k) win yield a good
suboptimal, if not an optimal solution of (Dpg). Each step of

subgradient optimization will now be discussed in detail.

Step 3: The revision of the dual vector A 1is the most complicated
procedure in the branch-and-~bound algorithm. The procedure is based on a
proof (omitted here but contained in [15] and [16]) that if the nonnegative

scalar 6y 1is sufficiently small, then

N = max [0, - o s:B(x“‘l))
18 closer than Ak~l1 (as measured by Euclidean distance) to the optimal
solution of (D,,), although wh () > w* (A7) need mot hold. The
complication, then, lies in the choice of Oy; Held and Karp [15]
successfully used 6 = 1 for all k in their work on the traveling
salesman problem, and Held, Wolfe, and Crowder [16]) later validated a more
general method for choosing a value for ©Og. (Those readers not
interested in further detail on the procedure for revising A should skip
to the discussion of Step 4.) Actually, the procedure used for revising A
in the computer implementation of the branch-and-bound algorithm discussed
in Section 6 is a generalization of the above expression for Ak that is
due to Cemerini, Fratta, and Maffioli [2] and Crowder [5]). For
completeness, the procedure is now summarized without justification. Given

a subproblem (P,p) characterized by the "vector of information”

-16~




[A,B,h,v:B(h),s:B(k)], set Xp = A and set the wm-vector do = 0; the
sequence of dual vectors {AX} 1s generated by the recursions
k * k-1 k-1

d" = - sAB(h )y + Bd

1 1if ZI = ®

A

1f Z_ <K =
R\ I

A ok1y
ak 1g* - )IZ
AB

¢ = max [o.)""1 + ekdk] .

where B 1s a known nonnegative constant (B = 0.6 in the computational
experience discussed in Section 6) and {ay} 1is a predetermined sequence
of nonnegative scalars generated according to the following policy (c.f.
[9, p. 8], [16, p. 68]) and [5, p. 361]): (1) set ap = 2 for 2N
iterations, where N 1is the number of nodes in the network, (2) then
successively halve both the value of a; and the number of iterations

oy remains constant until the number of iterations 1s less than 5, (3)
thereafter, @ 1is halved every 5 iterations. Note that the above
expression for dX can be expanded to yield

k

* k-1 % k=2 * k-3 coe — pE~1 % .0
o« - (T - pep 872 - ek (7Y - ek, 0

so that the direction of movement away from Ak-l 44 a discounted

composite of the current and previous slack vectors (subgradients).




A
Step 4: Given the revised dual vector A, (PAB) is equivalent to

an MST problem where the weight assoclated with arc j 1is -~ 1if j € A,

o {f J €¢B, and (CJ + )_';_1 )'1'1,1) otherwige. As discussed in Step 7

below, the arcs whose indices are in A form a subtree. Hence, (P:B) may

be solved efficiently by first forming the subtree of "admitted” arcs and

then continuing with the Prim-Di jkstra algorithm as described by Prim [21}].

Step 5: Upon solving (P:3). an attempt is made to fathom the
subproblem (P,p), that is, to remove the subproblem from further
consideration. As indicated by the flowchart contained in Figure 2, the
fathoming subroutine consists of the four steps A, B, C, and D. 1In Step

A, a check is made on whether (1l+¢€) V:B(h) 2 Z_ holds, where 100e 1is

1
the given percentage error tolerance (€ = 0.00, 0.01, or 0.05 in the
coaputational experience discussed in Section 6). With V:B(k) being a

lower bound on vxn, 1f (l+e)w:B(h) 2 Z_ holds, then the subproblem can
be fathomed since 100e is the waximum percentage error that could result
if the optimal incidence vector for problem (P) belonged to the feasible
region of (P,.). 1If (l-H:)u:B( N) < Z,, the fathoming subroutine proceeds
to Step B where a check is made on whether xxn(k) is a feasible for
(PAn) and therefore (P), that is, on whether the minimal spanning tree
for (P:h) also satisfies the resource constraints of (P). The
feasibility check is easily made by checking for a strictly negative
component in the slack vector cxn(h); if Q:B(A) 2 0 does not hold, the
fathoaing subroutine ends with (PAB) unfathomed; if czn(k) 2 0, the
fathoming subroutine proceeds to Step C in order to update the incumbent if

necessary. More specifically,
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vAB(A) chl(x) A.AB(A) < ZI
holds since (P,p) was not fathomed in Step A; however,
* * %
chB(A) vAs(h) + laAB(k) < zI

need not hold. Given the verification in Step B of the feasibility of

x:B( A) for problem (P), if cxxn(h) < Z, does hold, then xxn(x)
becomes the new incumbent; otherwise, the incumbent remains unchanged.

Regardless of the outcome of Step C, Step D makes another attempt to fathom

(Pyg). In particular,
.+ ok _ aah * *
”&'(l) v cxn(k) hn(l) < VB < cxu(k) .

where the last inequality follows from the verification in Step B of the
feasibility of xZB( A) for problem (P AB); hence, if complementary
slackness holds, that is, if M:B(k) = (), then wxn().) - vxn = cx:‘(h) so
that A and x:B( A) are optimal solutions to problems (D ap) (P AB)’
respectively. Actually, if hxn(k) Le vxn(h), subproblem (P“) can be
fathomed since 100e is the maximum percentage error that could result by
assuming x:n(k) is the optimal solution to (P, ). Note that if
subproblem (P, ) 1is fathomed in Step D, then xx‘( A\) will always have

Just become the new incumbent in Step C since

exjy (M) = wi (M) + My (M) < (HewR (V) <z,

-19-
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where the first inequality follows because Asxs(k) <€ H:B(A) and the

second inequality follows from the fact that (PAB) was not fathomed in

Step A.

Step 6: If the subproblem (PAB) vas not fathomed in Step 5, a

decision must be made as to whether to continue with subgradient

optimization. Let lp, A}, l?, ceey AF denote the dual vectors generated k

during the first k iterations of subgradient optimization. Recall that

vxn(ho), v*n(hl), v:n(kz), ceoy w:B(kk) need not be a nondecreasing
sequence; hence, it is necessary during subgradient optimizatiom to
initialize and update an incumbent dual vector AI, that 1is, that vector
among O, a1, a2, ..., % that produces the greatest lower bound on v:B.
A (ktl)-st 1iteration of subgradient optimization is performed unless one
of the following two situations occur: (1) k D> 4N, where N 1is the number

of nodes in the network, or (2) within the 5 most recent iterationms,

v:‘(l;) has not increased by at least 0.1X.

Steps 7, 8 and 9: After an unsuccessful attempt to fathom the

subproblem via subgradient optimization, (PAB) must be partitioned into

two subproblems. Refer to the set of arcs whose indices are in A as the
“A~arcs”. Assume inductively that (if A # ¢) the A-arcs form a subtree
and that at least one of the arcs of the subtree is incident to the source;
hereafter, this subtree will be referred to as the A~subtree. If A #* ¢,

let JAI denote the set of arc indices such that j € JAB if and only if

j £ B and one of the two nodes which arc j 1is incident is a member of

the A-subtree and the other node is not; if A = ¢, let J equal the

AB

vt




indices of those arcs not in B but incident to the source. Also, let j*

1
denote the index that minimizes cj + Z‘ =1 1 13 over § ¢ JAB (recall A
is the incumbent dual vector after subgradient optimization). Then,
partition (P ) 1into the two subproblems (P ) and (P
Av{j3*},B ,Bu{j"}
Note from the inductive hypothesis and the definition of j , that the
Au{§* }-arcs form a subtree and at least one of the arcs in the subtree is

incident to the source. Note also that j* i8 simply the index of the arc

that connects the subtree corresponding to A (node 1 1if A = ¢) to its

closest neighbor as measured by the objective function coefficients of
{xj j € JAB} in problem (Pﬁi); that 1s, 3J* was the index of the first

arc added to the A-subtree when the Prim—~Dijkstra algorithm was used

during subgradient optimization to solve the MST problem (PAB)
I

Consequentl (P pA
d Vo Cavis* 18
u(y*), B) in the form of the "vector of information”

[Au{j*}.B,l;,v:n(h;),sxn(h;)), should be added to the stack of unfathomed

) and (P:;) have the same optimal solution

so that (P

subproblems unless fathoming is possible due to the occurrence of one of
the following situations:

(1) The amount of a particular resource used by the "admitted”
AU{j*}-subtree already exceeds the supply available for the entire spanning

tree; that is, 2 > bi' In such a case, (P ) can be

JeAv{3*} 14 Au{i*},B

fathomed because it has no feasible solution.
(2) Situation (1) has not occurred but Av{j*} contains N-1

indices, vhere N is the number of nodes in the network. In such a case,

(»

Av{s*},B
fore its optimal solution, is known, namely the spanning tree formed by the

) can be fathomed because its only feasible solution, and there-

N-1 arcs corresponding to Au{j*}.




The subproblem (P

) cannot be dealt with as easily and

A,Bu{s*}

must be treated as follows:.

(1) A lower bound on v:,nu{j*) is obtained by solving (as dis-

1
cussed in Step 4) the MST problem (PA .
P P ( A,nu{j*})
(2) Using the resulti o (AI) = Al), and
. " Ve ey
*
s A an attempt is made to fathom (P lying th
Asugh M mp ( A,Bu{j*)) by applying the
fathoming subroutine as described in Step 5; note v: B {j*}(kl) is always
v
»

greater than or equal to w:B(X;) and may even equal = if Bu{j*}
contains many arc indices.

(3) 1if (P ) cannot be fathomed, it is added to the list of

A,Bu{s*}
unfathomed subproblems in the form of the “vector of information”

[A.nu(j*},xl.v: (ﬁ).-: abH].

p‘u(j.} BU(_‘I*)

To illustrate the branch-and-bound algorithm discussed in the
previous section, consider the following example having 6 nodes, 15
potential arcs, a supply of by = 23 units of resource 1, and a supply of
by = 12 units of resource 2. Figure 3 provides the data for each
potential undirected arc (p,q), 1 < p < q  6; the upper left corner of
the cell corresponding to arc (p,q) contains the arc's index j; the
center of the cell contains the cost ¢y of including the arc in the
spanning tree; the lower right corner contains the amounts a)j and
a4 of resources 1 and 2, respectively, consumed by including the arc
in the spanning tree. For example, the arc incident to nodes 3 and 5 has
index 11 and, if included in the spanning tree, would cost 8.5 and consume

4 units of the first resource and 2 units of the second resource.
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The application of the branch-and-bound algorithm (with f = 0.6 in
Step 3 and an error tolerance of € = 0 in Step 5) results in the
beb-tree of Figure 4. Each box (node) of the beb-tree corresponds to a
subproblem (Ppp) and contains, either explicitly or implicitly, the
subproblems “vector of information” [A,B,A,w:B(k),s:B(k)] as described in
the discussion of Steps 1, 2, and 10 (to conserve space, w:B(k) and
s:B(l) are abbreviated by w and s, respectively); if a box does not
explicitly contain all components of the "vector of information”, it is
implicit that the missing items are identical to the corresponding items in
the box's "father”™ in the bé&b-tree. The boxes are numbered according to
the order in which they appeared during the execution of the algorithm; two
boxes created simultaneously by partitioning (branching) in Step 7 have the
same number and will be distinguished hereafter by appending "a” to the
nunber of the left most box and “b" to the rightmost box. Thus, at "time”
t (1 <t <18), the b&b-tree consists of the subtree in Figure 4 that
spans the boxes having numbers less than or equal to t; the leaves of this
subtree comprise the stack of unfathomed subproblems at "time"™ t.

Box 1, the root of the bé&b-tree, indicates that the minimal spanning
problem that results from ignoring the resource constraints in (P) has an
optimal solution that consumes 1 more unit of each resource than is
available; hence, the branch-and-bound algorithm must be used. A box
having only one branch leaving it (boxes 1, 3a, 3b, 5a, 5b,7a, 9a, 9b, 12a,
and 17a) corresponds to the start of a sequence of iterations of
subgradient optimization (Steps 3-6); the results of subgradient
opg}mization appear immediately below in the box's only "son”, where the

son contains "no change” 1if subgradient optimization failed to improve the

. 2




lower bound vxn(h); the intermediate results of subgradient optimization
do not appear in Figure 4 but instead are summarized along the branch from
father to son by a fraction (in parentheses) consisting of a denominator
equal to the number of iterations and a numerator equal to the number of
iterations that resulted in an improved lower bound. A box containing the
results of a sequence of iterations of subgradient optimization is one of
two types. The first type (boxes 2, 4, 6, 8, 11, 14, and 16) arises when
subgradient optimization is terminated via Step 6 so that the subproblem

P and P
AU{j*},B) ( A,nu{j*})’
represented respectively in Figure 4 by the box's "left” son and "right”

(PAB) must be partitioned in Step 7 into (

son; the second type (boxes 10, 13, and 18) arises when subgradient
optimization terminates via Step 5 with the subproblem's fathoming (for the
reason given in parentheses within the box). Boxes 7b, 12b, 15a, 15b, and
17b, the only boxes not yet discussed, each represent a subproblem created
by a partitioning in Step 7 but never partitiomed further, either because
it (box 12b or 17b) was fathomed (for the reason given in parentheses
within the box) in Step 8 or because just prior to the algorithm's
termination it (box 7b, 15a, or 15b) was one of several fathomed
simultaneously in Step 10 when the lower bound of the top item (box 15a) on
the stack of unfathomed subproblems exceeded the incumbent's objective
value.

As indicated by asterisks in Figure 4, there were three incumbent
changes at Step C of the fathoming subroutine: the first between boxes 1
and 2 during a subgradient optimization iteration that failed to improve
the lower bound wxn(k) and the second and third in boxes 13 and 17b,

respectively, when the subproblems they represent were fathomed due to

24—




complementary slackness. Note that the third and last incumbent is
optimal. The optimal spanning tree consists of arcs (1,6), (6,5), (1,2),
(6,4), and (4,3); it has a total cost of 22.7 and consumes 23 units of the
first resource and 12 units of the second resource.

This small example illustrates the potential advantages of a
branch-and-bound approach based on Lagrangean relaxation. Although only 8
of the 49 iterations of subgradient optimization resulted in an improvement
of at least 0.1% in the lower bound, these 8 increases in the lower bound
together with the three incumbent changes resulted in a small b&b-tree.
As discussed at the end of Section 6, a more traditional branch-and-bound
approach that bounds the optimal objective value of (PAB) only once by

solving (P:B) results in a b&b~tree having over 400 nodes.

4. SOLVING THE RCMST PROBLEM

1f ej < Xg_zdp for some arc j, then the optimal solution to (P)
need not satisfy every arc capacity constraint. Comnsequently, the
branch—~and-bound algorithm of the previous section must be modified.

Recall that T denotes the finite set of incidence vectors
corresponding to trees. Let F denote a subset of % such that x ¢ F
if and only 1f x corresponds to a tree in which there exists a feasible
flow, that 18, a flow from the source satisfying the demands at the sinks
without violating any arc capacity constraints. The RCMST problem can now

be expressed as




@ Minimize 2?_1 ¢ Xy

n

subject to 23-1 a,x, <b for 1 <1< m

1373

and x € F .

Given a set A consisting of indices of “"admitted” arcs and a set
B consisting of indices of "banished” arcs, define the subproblem (QAB)

by

(Qp) Minimize 2?_1 cy%y

subject to X‘j‘_l s xy<b for 1<icm ,

and x € FAB .

vhere F,. = F N {x xg =1 for j € A} n (x,xj =0 for j € B}. Since

Fup < Taps

furnighes a lower bound on the optimal objective value of (QAB); that is,

the optimal objective value of (P:B) for any nonnegative A

the optimal objective value »>f (QAB) can be bounded from below by
relaxing the resource constraints and ignoring the requirement that there
exigst a feasible flow in the tree corresponding to x. Ignoring rather
than relaxing the requirement of a feasible flow is necessary because

x €F cannot be expressed as a system of linear inequalities in the

AB
binary vector x.

Overview of Necessary Modifications. Suppose that the subproblem

(QAB) is under consideration at some point in the branch-and-bound

slgorithm. Recall that if A # ¢, the A-arce (the arcs whose indices are

T Cante e




in A) form the A-subtree which includes the source as one of its nodes.
Given the A-subtree and j € A, let fj denote the unique flow on arc

J necessary if the source is to satisfy the demands of the other nodes in
the A-subtree. For example, consider the A-subtree of Figure 5, where
node 1 is the source, the demand dP for each other node p 1s shown
adjacent to the node, and the ordered pair adjacent to each arc j con-
sists respectively of the capacity ey of the arc and the unique flow

fj on the arc necessary if the source is to satisfy all demands. Assume
inductively that {fj j € A} 1is known and is a component of the "vector
of information" for the subproblem (QAB)' Also assume inductively that
instead of being stored in the “"vector of information” as a set of arc
indices, A 1is stored as an ordered 1list of ordered pairs of nodes, where
an ordered pair (p,q) appears in the k-th position on the list if the
undirected arc incident to nodes p and q was the k-th arc added to
the A-subtree and the direction of flow on the arc is from p to q; note

that the index of arc (p,q) can be computed easily whenever needed from
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the formula given at the beginning of Section 1. For the example of Figure

5, suppose A 1is stored as the following ordered list of ordered pairs

Arc (p,q) Index J
(1,11) 10
(11,4) 46
(1,6) 5
(11,12) 96
(12,15) 102
(11,7) 73
(12,2) 24

where the indicated index of each ordered pair (p,q) 1is not part of the
data structure but i{s computed whenever needed from the formula given at
the beginning of Section 1 (with N = 15); note that the direction of flow
on each arc is from p to q. Given such a data structure for A, it is
simple to update the flows when an arc is added to the A-subtree; the
procedure would be as follows:

(1) Let (p,q) denote the arc to be added, where p 1is a node in

the A-subtree and q 1s not; of course, the flow on arc (p,q) must be

(2) 1increase by dq the flow on each arc of the unique path from
the source to node p; note that this is easily done in one upward pass
through the data structure for A since the ordered pair (r,s) that must

precede the ordered pair (s,t) on the only path from the source to node

N~



P 1s the unique ordered pair higher on the list in which s appears as
the second component. In the example of Figure 5, suppose that an arc
(2,q) 1s added to the A-subtree; then by repeatedly scanning the second
component of the above data structure for A, the flows on the arcs of the
unique path from the source to node 2 are increased by dq in the
reverse order (12,2), (11,12), and (1,11).

Given the above overview, it is now possible to describe the
modifications to the branch-and-bound algorithm of Section 2 necessary for
it to solve (Q) 1instead of (P), that is, the RCMST problem instead of

the RMST problem.

Steps 1, 2, and 10. As discussed in the overview, the “vector of

information” characterizing a subproblem (Qa,p) now includes the current
values of the flows on the arcs of the A-subtree. In particular, the
“vector of information” is [A,B,{fj'j € A},k,wxn(l),sxn(h)], vhere A is
stored as the data structure discussed in the overview. Since {fjlj € A}
is uniquely determined by A, an alternative to {ncluding {fj'j € A} 1in
the "vector of information” 1is computing it whenever necessary; however,
because the computation cannot be performed in a straightforward manmer,
the tradeoff between increased computation time and decreased storage does

not seem to favor this altermative.
Step 3. No modifications are necessary.

Step 4. The feasibility check in Part B of the Fathoming Sub-
routine will be facilitated if, as the Prim-Di jketra algoritim starts with

the A-subtree and adds an arc at each iteration, the flows on the arcs of




each successive subtree are updated (using the procedure discussed in the
overview) until either (1) an arc is added at some iteration that forces
the flow on at least one arc of the current subtree to exceed its capacity
or (2) the optimal solution to (P:i) is obtained and the flow on the
corresponding tree satisfies the arc capacity constraints. Note that (1)
may occur since the requirement that there exist a feasible flow in the

optimal solution is not present in (P:B).

Step 5. The Fathoming Subroutine makes and attempt to fathom the
subproblem mn)uuthruuuofmhmg(&p for some A > O.
Of course, the feasibility check in Part B now refers to checking whether
x:n(l) is a feasible solution of (QAB) and, therefore, (Q); the check is

easy given sxn(k) and the modification deséribed in Step 4.

Step 6. No modifications are necessary.

Steps 7, 8, and 9. No modifications are necessary to Step 7; as

before, j* is computed and (QAB) is partitioned into the two subproblems

(@ ) and (q
Au{3*}),B ( A,Bu{s*)
in Steps 8 end 9; however, the former subproblem is handled differently.

). The latter subproblem is treated as before

First, an attempt is made to fathom (QA ) by checking for the

u(3*},8
occurrence of one of the two situations described in the discussion of Step
8 in Section 3; then, if this is unsuccessful, the flows on the arcs of the
AU{j*)}-subtree are updated (using the procedure discussed in the overview)

to reflect the addition of the arc j* to the A-gubtree. If the updated

)

flow violates at least one of the arc capacity constraints, (QAU (j*) B
3




is fathomed because it has no feasible solution; otherwise, (QA ) is

v{s*},n
added to the stack of unfathomed subproblems in the form of the "vector of
* * I =& I, & ) ¢
information [A v {3 },B,{fj'j eAv {§TH,A '“Au{j*},n()' )"Au{j*),n“ )]

5. SOLVING EXTENSIONS OF THE RCMST PROBLEM
This section discusses the modifications to the branch-and-bound
algorithm necessary to analyze two extensions of the resource-constrained,
capacitated minimal spanning tree problem: the existence of multiple arcs

between each pair of nodes and the existence of multiple sources.

Multiple Arcs Between Each Pair of Nodes

In many practical situations, it is possible to comstruct an arc
between a pair of nodes in a variety of ways, with each way having its own
associated cost, capacity, and consumption of resources. For example, it
may be possible to increase the capacity of an arc between & pair of nodes
by simultaneously increasing the conmstruction cost, increasing the
consumption of some subset of resources, and decreasing the consumption of
another subset of resources.

Although requiring additional notation to explain, the modifications
to the branch-and-bound algorithm necessitated by the existence of multiple
arcs between each pair of nodes do not require a significant increase in
computational effort. More specifically, asssume the indices 1, 2, ..., n
of the potential arcs for the spanning tree resulted from an arbitrary
indexing rather than from the method described at the beginning of Section
1; for each node pair (p,q) with p < q, let Jpq denote a set of arc

indices such that J ¢ Jpq if and only if arc j 1is inclident to nodes p

AU
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and q. The only modification to the branch-and-bound algorithm occurs in

Step 4, the solution of (P:h) for a given A, B, and A; in particular,
(P:h) is now solved as follows:
(1) Form the A-subtree.
(2) Por each node pair (p,q) for which at least one node is not
in the A-subtree, temporarily replace the multiple arcs

incident to the two nodes by a single arc having an associlated

weight of minjer _B[cj + i:-l klaij] if Jpq ~-B#¢ or =

q
if J c B.
Pq —

(3) sStarting with the A-subtree, use the Prim-Dijkastra algorithm
as described by Prim [21] to solve the minimal spanning tree
problem with the arc weights as computed in (2).
Note that the only "extra work™ necessitated by multiple arcs between each
pair of nodes is the computations described in (2); since the effect of (2)
1s to ignore all but the “"cheapest™ arc (as measured by the revised cost
c.1 + 2:_1 llaij) between a pair of nodes, there is no increase in the
size of the minimal spanning tree problem that must be solved to determine

the optimal spanning tree for (P:B).

Multiple Sources

Consider an extension of the problem in which each node must have
access to one and only one supply center (hereafter, a source) from which
it will receive a particular commodity. Suppose there are two means of
creating access from a node to a source: (1) direct access, that is,

construction of a source at the node itself, and (2) indirect access, that
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is, construction of a unique path to the node from one and only one other

node at which a source has been built. Clearly, the resulting network is a

g spanning forest, that is, a network in which each node belongs to one and

only one of a set of disconnected trees; note that each tree in the
7 spanning forest contains a single source and the (possibly empty) set of
nodes it supplies in addition to itself. Restricting the network to a
spanning forest implies that there are reasons (perhaps physical or 1
technological) that prevent the flow destined for a particular node to be i
transmitted simultaneously from more than one source or along more than one A
path. 4
As before, if the spanning forest ultimately includes a potential
undirected arc, the arc would have a known flow capacity and would result
in the incurring of a known cost and the consumption of known quantities of

each of the resources. Also as before, associated with each node is a

known demand for the commodity; however, in addition, if a source were
congtructed at node p, it would have a known supply of e; units and
would result in the incurring of a known cost c; and the consumption of
units of resource 1, 1 < 1 { m. Given the above quantities as well

.
aip

as the available supply of each resource used in the construction of arcs

and/or sources, the problem is to construct a minimal cost spanning forest
subject to the following requirements: (1) all resource constraints are
satisfied, (2) each tree in the forest contains exactly one node at which a
source has been constructed, and (3) there exists a feasible flow in each

tree in the forest. Note that a resource constraint cannot only be used

(as indicated in Section 1) to limit the degree of a node in the spanning

forest but can also be used to limit the number of sources constructed.
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A straightforward procedure transforms this minimal spanning forest

problem into an RCMST problem; more specifically, augment the original
N-node network with a super-source, a new node having an infinite supply of
the commodity, and join each node p to the super-source with an
artificial arc having a capacity of e;, a cost of c;, and resource
consumptions a'p, 1 <1< m Thus, the data associated with the construc-
tion of a facility at node p 1is now associated with the artificial arc
Joining node p with the super-source. Note that multiple artificial arcs
between a node and the super-source could be used (as discussed earlier in
this section) if there were more than one way to construct a source at node
p. Clearly, the optimal spanning tree in the revised network is equivalent
to the optimal spanning forest in the original network; in particular, the
optimal spanning forest for the original problem is obtained from the
optimal spanning tree for the revised problem by deleting the super-source
and any arc incident to it, with the understanding that a source is con~
structed at each node to which a deleted artificial arc was incident.

Thus, this multiple-source version of the problem is equivalent to an RCMST
problem with one more node than the original problem; as such, its solution
entails a negligible increase in computational effort over the RCMST

problem.

6. COMPUTATIONAL EXPERIENCE AND CONCLUSIONS
A FORTRAN computer program for solving the RCMST problem has been
implemented on the IBM 3033 computer at Stanford University. The computer

program consists of approximately 1000 statements. The variable memory

requirements of the program are a function of the number of nodes in the




network, the number of resource constraints, and the amaaximum number of
unfathomed subproblems that may be on the stack simultaneously; denote
these parameters by N, m, and S, respectively. The required total number

of kilobytes (1000 bytes) of memory is given by

8N2 +22N-20 aN(N-1 u+96)gn -1) s
~1000 [4‘6’1 l: + (10+8=) | 17560

Table 1 tabulates the above expression as a function of S for various
values of N and m; the table is approximate in the sense that the
constant term has been rounded to one decimal place and the coefficient of
S has been rounded to three decimal places. It can be seen from both the
expression and the table that the memory requirement is most affected by

S; the last column of Table I provides the maximum value of S assuming an
availability of at most 7000 kilobytes of memory, the approximate
availability of memory on Stanford's 1BM 3033. Table I, in conjunction
with the computational experience described below, indicates that in most
cases the limiting factor in solving RCMST problems should be the execution
time rather than the memory requirement.

In order to gain some preliminary computational experience with the
algorithm, a random—problem generator was constructed; it executes the
following steps:

(1) The determination of the demands at the nodes is via one of
three methods, depending on which problem type is desired. To obtain the
most general RCMST problem, the demand dp at node p (2 {p<N) 1is an
independent random variable uniformly distributed on the integers in the

interval [1, 50). To obtain an important special case of the RCMST




problem, dp 1is set equal to 1 for 2 { p < N. Finally, to obtain an )
RMST problem (i.e., without flow constraints), dp is set equal to 0 3
for 2 {p <N.

(2) To insure the existence of at least one feasible solution to

the RCMST problem, a feasible tree 1s randomly generated in N-1
iterations. More specifically, the trivial subtree consisting only of node
1 is iteratively expanded; iteration k consists of adding arc (p,q) to
the subtree, where p 1s randomly selected from the k nodes belonging to
i the current subtree and q 1s randomly selected from the N-k nodes not

yet a member of the current subtree. Let Tr denote the set of indices of

those arcs comprising the randomly generated trees and, for J € Tr’ let

§ f, denote the flow on arc J that would be necessary to satisfy the node

’ b

demands. Then, for j ¢ Tr’ the flow capacity e is an independent

3
random variable uniformly distributed on the integers in the interval
[fj, 2:_2 dp]; note that this insures that the randomly generated tree will
always satisfy the flow capacity constraints. Also, for J ¢ Tr‘ the
congtruction cost ¢, 18 an independent random variable uniformly [

]
distributed on the integers in the interval [0, 99], and the consumption

a of resource 1 (1 < i {m) is an independent random variable

1]
uniformly distributed on the integers in the interval {0,9]. i

(3) Recall that there are potentially n = (1/2)(N)(N-1)
undirected arcs, each with a distinct index j equal to its position in a
lexicographic ordering of the n arcs based on the representation of an

arc as a vector (p,q) with p < q. For each arc j that is not a member

of the randomly generated tree, an independent random number pJ is

generated that is uniformly distributed over the continuous interval }

~36-




[0,1). 1If £ (10/N), then arc 3 1is referred to as a “potential arc";

%

the associated ¢, and a
h] 1]

described in Step 2, but the flow capacity e

(1 <1 {m) are randomly generated as

is an independent random

J
variable uniformly distributed on the integers in the interval

minimum 4 d ). 1If > (10/N), then arc is effectivel
[25p_<_n 0 P2 &) py > (1O/N), 3 ctively
eliminated from inclusion in the optimal spanning tree because ¢, and

3

(1 <1 {m) are set equal to an extremely large number and e 6 1s set

A
3

implies that, for n > 10, the expected number of potential arcs for

8

]

equal to zero. The usage of (10/N) as the "cutoff valve” for p

inclusion in the spanning tree is 5(N-1) + 4, where 0 < A < (N-1)
reflects the special treatment given to the arcs of the randomly generated
tree; thus between 5N and 6N 1is a reasonable estimate for the number of
potential arcs in any randomly generated problem.

(4) The remaining step is to determine values for b, an wmvector

whose i-th component is the availability b, of resource {

i
(1 <1<m). Let bL denote an wm-vector whose 1-th component 18 the
amount of resource i consumed by the randomly generated spanning tree of
Step 2. Also, let hv denote an mvector whose 1i-th component 1is the
maximum amount of resource i consumed by any spanning tree comprised of
any of the potential arcs; this maximal usage of resource 1 1s found by
solving a maximal spanning tree problem where the "cost” of arc j 1is

a Finally, for some constant A satisfying 0 < A< 1, let

1§’
b= (I—A)bL + hbu. Note with this choice of b that the randomly
generated spanning tree of Step (2) satisfies the resource constraints for

all values of A; also note that as A increases from 0 to 1, the

number of spanning trees satisfying the resource constraints also
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increases. Rather than use b = (1-\)b, + kbu for some 0 < A< 1, a

slight modification is made. More sper fically, to insure a nontrivial
solution to the RCMST problem, it is necessary to insure the infeasibility
of the spanning tree that solves the simple MST problem with the arc costs
of the RCMST problem. To do so, this simple MST problem is solved, some
resource 1i* 1s chosen for which the consumption of resource 1* 1in the

*

MST equals a value v that is strictly greater than component 1~ of b

U’
and component 1* of bU is reset to v. (Note that the assumption of
the existence of such an 1i* 1s made without loss of generality since such
a condition can be obtained eventually by simply discarding the current set
of data and returning to Steps (2) and (3) to generate new data.) After

resetting component 1* of b recomputing b = (l—k)bL + AbU (0 <A< 1)

v’
leads to a set of resource constraints that is always satisfied by the
randomly generated spanning tree of Step (2) but never satisfied by the
solution to the simple MST problem; thus, a nontrivial optimal solution to
the RCMST problem exists. In the computational experience discussed below,
A= 0.5 was used.

Tables II, III, and IV summarize the results of some of the
computational experience. Table II summarizes results for six RMST
problems each having 50 nodes and 5 resource constraints; Table III
summarizes the results for six RCMST problems each having 20 nodes, 3
resource constraints, and a unit demand at every node; and Table IV
summarizes the results for six RCMST problems having 20 nodes, 3 resource

constraints, and random node demands as described in Step (1) of the

random-problem generator. The column headings of Table II are described

more explicitly by the following:




(1) The second column contains 100e. Recall that 100e is the
maximum percentage error that might result from using the fathoming rules
discussed in Section 3; that is, the cost of the "e-optimal” solution to
the problem may be at most 100e percent higher than the exact (e=0)
minimal cost. The actual percentage error that resulted is given in the
ninth and last column of Table II.

(2) The third column contains the number of nodes in the
branch-and~bound tree generated to solve the problem.

(3) The fourth column contains the number of MST problems solved
during the executions of Steps 4 and 8 of the algorithm.

(4) The fifth column contains the maximum number of unfathomed
gsubproblems that were simultaneously on the stack and, in conjunction with
Table I, provides insight into the memory requirements of the problem.

(5) The sixth, seventh and eighth columns are related. The sixth
column (labeled (a)) contains the CPU time (excluding compilation) that
elapsed until the eventual e-optimal solution became the incumbent
solution, and the seventh column (labeled (b)) contains the total CPU time
(excluding compilation) required to solve the problem. The ratio
100(b-a)/b contained in the eighth column is the percentage of the total
execution time that was required to verify that the e€-optimal solution
that became the incumbent at the time given in the column labeled (a) was,
in fact, an e-optimal solution; in this sense, the ratio measures “wasted"
computational effort. The above descriptions also apply to the headings of

the columns of Tables III and IV.
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The purpose of the computational experience summarized by Tables II,

I11I, and IV was to demonstrate the algorithm's potential to solve large
problenﬁ and to gain insight into the algorithm's behavior while solving a
series of related problems. The reported execution times are meaningful
only in this context. Lower (Higher) average execution times for similar
problems could have been obtained by decreasing (increasing) the arc
density in Step (3) of the random-problem generator and/or by increasing
(decreasing) A in Step (4) of the random—problem generator. Also,
significantly lower execution times would result if a computer programmer
more knowledgeable than this author were to implement a more sophisticated
algorithm (c.f., [4], (19], or [24]) for solving the MST problems in Steps
(4) and (8) of the algorithm; the solution of the MST problems constitutes
a major portion of the computational effort so that a more efficient
algorithm would have a significant favorable impact on execution times.
Another operation done repetively during the algorithm's execution is the
insertion of a subproblem into its proper position on the stack of
unfathomed subproblems based on the value of its lower bound; currently
done in a somewhat naive manner, this operation could be coded by a more
sophisticated computer programmer than this author to execute significantly
faster. A final potential way to reduce execution time is to "fine—tune”
the parameters used to revise A in Step (3) of the algorithm as described
in Section 3.

In light of the comments of the preceding paragraph, conjectures
rather than conclusions are in order. Table 11 indicates that the
algorithm has the potential to solve very large RMST problems, especislly

if one is willing to forego exact optimality and accept accuracy to within
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12 or even 5%. However, Tables III and IV indicate that the algorithms
potential for solving large RCMST problems is less promising, even if one
is willing to accept accuracy to within 52 rather than exact optimality.
However, since the i-th problem of Table III is identical to the i-th
problem of Table IV with the exception of node demands, it does appear that
the RCMST problem with unit demands 1is significantly easier to solve than
the general RCMST problem.

One final point should be made. It is possible to “trick” the
computer program into the more traditional branch-and-bound approach that
bounds a subproblem (PAB) by solving only the relaxation (Pzn), that is,
the MST problem that results from ignoring the resource constraints. Thus,
the traditional approach and the Lagrangean-based approach can be compared
with the same program on the computer. Computational experience indicates
that a traditional branch-and-bound approach to the RMST and RCMST probleams
fails due to a lack of sufficient computer memory; because of the frequent
branching of the traditional approach, the size of the list of unfathomed
subproblems grows so rapidly that available computer memory is rapidly
exceeded. This is illustrated by the example at the end of Section 3 where
the branch-and-bound algorithm based on Lagrangean relaxation resulted in a
bib—tree with only 18 nodes as compared to one with over 400 nodes

resulting from the traditional approach.

-41-




REFERENCES

{1] Bradley, G. H., Survey of Deterministic Networks, AIIE Trans. 7
(1975), 222-234.
[2) Camerini, P. M., L. Fratta, and F. Maffioli, On Improving Relaxation

Methods by Modified Gradient Techniques, Math. Prog. Study 3

(1975), 26-34.

[3] Chandy, K. M., and T. Lo, The Capacitated Minimum Spanning Tree,
Networks 3 (1973), 173-181.

[4] Cheriton, D., and R. E. Tarjan, Finding Minimum Spanning Trees, SIAM
J. Comput. 5 (1976), 724-742.

[S] Crowder, H. P., Computational Improvements for Subgradient

Optimization, Symposia Mathematica 19 (1976), 357-372.

[6) Dijkstra, E. W., A Note on Two Problems in Connection with Graphs,

Numerishe Mathematik 1 (1959), 269-271.

{7] Duke, C. M., and D. F. Moran, Earthquakes and City Lifelines, San

Fernando Earthquake of February 9, 1971 and Public Policy, a

report to the Special Subcommittee of the Joint Committee on
Seismic Safety - California Legislature (1971).

{8] Edmonds, J., Matroids and the Greedy Algorithm, Math. Prog. 1 (1971),
127-136.

[9] PFisher, M. L., The Lagrangian Relaxation Method for Solving Integer
Programming Problems, Man. Sci. 27 (1981), 1-18.

(10} _ __, W. D. Northup, and J. F. Shapiro, Using Duality to Solve
Discrete Optimization Problems: Theory and Computational

Experience, Math. Prog. Study 3 (1975), 56-94.

-42~




(11]

(12}

(13]

[14]

[15]

[16)

(17]

(18]

[19]

[20)

(21}

Gavish, B., Formulations and Algorithms for the Capacitated Minimal

Directed Tree Problem, Working Paper No. 8016, Graduate School of

Management, University of Rochester, Rochester, N.Y. (1980).

» Topological Design of Centralized Computer Networks -

Formulations and Algirithms, Working Paper No. 8009, Graduate
School of Management, University of Rochester, Rochester, N.Y.
(1981).

Geoffrion, A. M., Lagrangean Relaxation for Integer Programming,

Math. Prog. Study 2 (1974), 82-114.

Held, M., and R. M. Karp, The Traveling Salesman Problem and Minimum
Spanning Trees, Opns. Res. 18 (1970), 1138-1162.

and » The Traveling Salesman Problem and Minimum

Spanning Trees: Part II, Math. Prog. 1 (1971), 6-25.
, P. Wolfe, and H. P. Crowder, Validation of Subgradient
Optimization, Math. Prog. 6 (1974), 62-88.

Hillier, F. S., and G. J. Lieberman, Introduction to Operations

Research, Holden-Day, Inc., San Francisco (1980).
Kershenbaum, A., Computing Capacitated Minimal Spanning Trees
Efficiently, Networks 4 (1974), 299-310.
and R. Van Slyke, Computing Minimum Spanning Trees

Efficiently, Proc. 25th Ann. Conf. of the ACM (1972), 518-527.

Kruskal, J. B., On the Shortest Spanning Subtree of a Graph and the

Traveling Salesman Problem, Proc. Amer. Math Soc. 7 (1956), 48-50.

Prim, R. C., Shortest connection Networks and Some Generalizations,

Bell Systems Tech. J. 36 (1957), 1389-1401.

Stadnie,




[22) Rothfarb, B., H. Frank, D. M. Rosenbaum, and K. Steiglitz, Optimal

Design of Offshore Natural-Gas Pipeline Systems, Opns. Res. 18
f (1970), 992-1020.
[23] Shapiro, J. F., A survey of Lagrangian Techniques for Discrete

Optimization, Ann. Discrete Math. 5 (1979), 113-138.

{24]) Yao, A. C., An O(IBI log log 'Vl) Algorithm for Finding Minimum

Spanning Trees, Information Processing Letters, 4 (1975), 21-23.

Y-




Table 1

Memory Requirements for Computer Program

Approximate Memory

Maximum Value of S

N m Requirement (Kilobytes) Assuming Availability
of 7000 Kf{lobytes of Memory

10 5 1.9 + 0.1108 63,619 AA}T
20 5 7.4 + 0.188S 37,194

30 5 16.5 + 0.2788 25,120

40 5 29.3 + 0.3828 18,247

50 5 45.6 + 0.497s 13,992

10 5 1.9 + 0.110s 63,619

20 10 11.2 + 0.2288 30,652

30 15 33.9 + 0.358s8 19,458

40 20 76.1 + 0.5028 13,792

50 25 143.6 + 0.657S 10,435

10 10 2.8 + 0.1508 46,648

20 20 18.8 + 0.308s 22,666

30 30 60.0 + 0.4788 14,518

40 40 138.5 + 0.662s8 10,364

30 50 266.1 + 0.8578 7,857
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